УДК 539.19 + 547.633.6

ИНФРАКРАСНЫЕ СПЕКТРЫ МОЛЕКУЛЯРНЫХ И ИОННЫХ ФОРМ ФЛУОРЕСЦЕИНА, ЭОЗИНА И 2,4,5,7-ТЕТРАНИТРОФЛУОРЕСЦЕИНА В ДМСО: ТЕОРЕТИЧЕСКИЙ РАСЧЕТ И ЭКСПЕРИМЕНТ

© 2010 А. В. Бирюков, А. В. Лебедь, Н. О. Мчедлов-Петросян

С целью подтверждения адекватности представлений о превращении структур флуоресцеина и его производных в ДМСО, развитых на основании экспериментальных спектров, проведена оптимизация геометрии и расчет частот нормальных колебаний равновесных молекулярных и анионных форм флуоресцеина и его 2,4,5,7-тетрабром- и 2,4,5,7-тетранитропроизводных в ДМСО. Квантово-механические *ab initio* расчеты проведены методом DFT B3LYP/6-31G++(d,p), с учетом неспецифической сольватации в рамках РСМ. Выполнено отнесение основных полос. Обнаружено хорошее соответствие между теоретическими и экспериментальными ИК спектрами.

Ключевые слова: флуоресцеин, 2,4,5,7-тетрабромфлуоресцеин, 2,4,5,7-тетранитрофлуоресцеин, ДМСО, РСМ, DFT, ИК спектры, отнесение полос

введение

Уникальные спектрально-флуоресцентные характеристики флуоресцеиновых красителей обусловили их широкое применение в различных областях химии, биохимии и биомедицины [1-4]. В последнее время появляются данные о новых производных флуоресцеина, обладающих ценными свойствами [5-8]; недавно описано даже получение ионных жидкостей на основе флуоресцеина и его галогенпроизводных [9].

Большая часть сведений о строении флуоресцеина и его производных в растворах была получена при помощи электронных спектров поглощения [1,2,5-8,10-13]. В то же время, колебательная спектроскопия дает дополнительную и иногда даже более явную информацию о состоянии тех или иных функциональных групп красителей. Так, существование различных молекулярных и ионных форм окси- и аминоксантеновых соединений было нами доказано на основании ИК спектров в ДМСО – растворителе, наиболее пригодном для подобного рода исследований [14-18].

В отличие от ИК спектров в твердом состоянии, колебательные спектры в растворах не искажены сильными взаимодействиями молекул с такими же соседними молекулами, но могут отражать эффекты сольватации – как неспецифической, так и специфической. С другой стороны, в настоящее время вполне возможен теоретический расчет колебательных спектров, как в вакууме, так и в растворе.

Целью настоящей работы было подтвердить адекватность представлений о превращении структур флуоресцеина и его производных в ДМСО, развитых на основании экспериментальных спектров. Был выполнен *ab initio* квантово-химический расчет оптимальной геометрии и частот нормальных колебаний в ДМСО молекулярных и анионных форм двух широко используемых в различных областях химии соединений: незамещенного флуоресцеина, его 2,4,5,7-тетрабромпроизводного (эозина), а также сравнительно мало изученного соединения – 2,4,5,7-тетранитрофлуоресцеина. Для учета неспецифической сольватации использована поляризационно-континуальная модель (РСМ) [19]. Экспериментальные ИК спектры растворов опубликованы ранее; они были получены главным образом в растворах красителей концентрации 0.03 М [14-18].

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Флуоресцеин (Рис. 1). Молекулярная форма, H₂R, в ДМСО существует почти исключительно в виде бесцветного лактона (I), с незначительной (0.1–0.2 %) примесью окрашенного хиноида [13, 14]. Цвиттерион, регистрируемый в водном растворе [18], не наблюдается уже при небольших добавках ДМСО и других органических растворителей [17, 18]. Из-за сближения (вплоть до инверсии) значений K_{a1} и K_{a2} в ДМСО моноанион HR⁻ в растворе существует в

малых количествах даже при оптимальном значении кислотности среды. Дианион R^{2-} (II) доминирует в щелочной среде.

Рис. 1. ИК флуоресцеина 0.012 М в 99.7% ДМСО: 1 – форма H₂R, 2 – форма R^{2–} [14,15].

Эозин (Рис. 2). Здесь нейтральная форма также существует в виде лактона (III), моноанион HR^- – в виде «фенолятного» таутомера с неионизированной группой СООН (IV), а при избытке КОН краситель полностью превращается в дианион (V) [17, 18]. В случае эозина константы K_{a1} и K_{a2} различаются сильно, и моноанион преобладает в условиях, когда к раствору красителя в ДМСО добавлен первый эквивалент щелочи ($H_2R + HO^- \rightarrow HR^- + H_2O$) [17].

2,4,5,7-Тетранитрофлуоресцеин (Рис. 3). Это соединение является столь сильной кислотой, что даже при концентрации H_2SO_4 вплоть до 1 М не удается полностью сместить равновесие ($H_2R \iff HR^- + H^+$) влево [16]. Поэтому спектр лактонного таутомера нейтральной формы был измерен в таблетках бромида калия [16]. Моноанион существует в растворах ДМСО как без каких-либо добавок, так и в присутствии одного эквивалента трифторуксусной кисло-

Рис. 2. ИК спектр эозина в 99.7% ДМСО: 1 - 0.1 М КОН (форма R^{2-}); 2 - 0.012 М КОН; 3 - 0.005 М КОН; 4 - в нейтральном растворителе (форма H_2R); 5 - спектр твердого образца (форма H_2R) [14,15].

ты; на основании данных электронной спектроскопии этой форме было приписано строение «фенолятного» таутомера (VII), с возможной примесью аниона-лактона [16]. Особый интерес представляет дианион 2,4,5,7-тетранитрофлуоресцеина, для которого доминирующим таутомером оказался лактон (VIII). В ИК спектре обнаружена интенсивная полоса 1765 см⁻¹, но раствор не бесцветен, а имеет желтую окраску [16].

Не так давно одним из нас совместно с Д. В. Самойловым и А. В. Ельцовым было показано, что в случае производных флуоресцеина, содержащих группу NO₂ в положениях 2 и 7, схема дополняется анионами-лактонами [10], ранее наблюдавшимися лишь для фенолфталеина и его производных [20,21]. Особенно выражен данный эффект для 2,4,5,7-тетранитрофлуоресцеина, для которого в большинстве растворителей таутомерное равновесие практически полностью сдвинуто вправо; при этом благодаря «нитрофенолятному» поглощению анионы-лактоны могут быть не бесцветными, а желтыми [16, 17].

Рис. 3. ИК спектр 2,4,5,7-тетранитрофлуоресцеина 0.03 М в 99.7% ДМСО: 1 – спектр твердого образца (форма H₂R); 2 – в нейтральном растворителе (форма HR⁻); 3 – 0.03 М CF₃COOH (форма HR⁻); 4 – 0.06 М КОН (форма R²⁻) [16, 17].

В случае эозина и эритрозина превращение превалирующей в ДМСО лактонной формы (III) нейтральных молекул H₂R в моноанион при титровании растворов красителей щелочью (КОН) приводит к появлению полосы валентных колебаний C=O группы СООН (\approx 1710 см⁻¹) взамен полосы C=O лактона (1765–1768 см⁻¹). Последующая нейтрализация по второй ступени приводит к исчезновению полосы \approx 1710 см⁻¹ ввиду диссоциации карбоксильной группы (СООН \rightarrow СОО⁻) на стадии превращения эозина и эритрозина из моноаниона HR⁻ в дианион R²⁻. При этом спектр дианиона R²⁻ (существующего, возможно, отчасти в виде ионных ассоциатов с ионами K⁺) становится сходным с ИК спектром серебряной соли Ag₂R соответствующего красителя в твердом состоянии.

Таким образом, ИК спектры подтверждают как последовательность превращения 2,4,5,7тетрагалогенпроизводных, установленную при помощи электронной спектроскопии, так и строение дианиона 2,4,5,7-тетранитрофлуоресцеина (VIII) [14–18].

РАСЧЕТЫ

Для подтверждения этих выводов, сделанных на основе только лишь экспериментальных спектров, были выполнены расчеты геометрии и колебательных спектров красителей в формах I–VIII. В расчетах использован метод теории функционала плотности (DFT) с использованием гибридного функционала B3LYP. Использован набор базисных функций 6-31G++(d,p). Расчеты велись как для изолированных молекул в вакууме, так и с моделированием сольватной оболочки. Учет сольватации осуществлялся в рамках модели поляризованного континуума (PCM). Расчеты производились с помощью программного пакета Gaussian 03.

Спектры, полученные расчетом, сравнивались с экспериментальными в области частот 1000–1800 см⁻¹. Для учета расхождений между экспериментальными и расчетными колебательными спектрами, вызванных ангармоничностью реальных колебаний, использовался метод масштабирования частот колебаний с помощью поправочных коэффициентов [22,23]. Масштабный множитель α_v выбирался в соответствии с минимальным значением среднеквадратичного отклонения σ_v , которое вычислялось по формуле: $\sigma_v = \sqrt{\sum_{i,j} (v_i^{(3)} - \alpha_v v_{ij}^{(r)})^2 / N}$, где N – число полос экспериментального спектра в выбранном диапазоне; $v_i^{(3)}$ – экспериментальная частота колебания в точке максимума i- ой полосы; $v_{ij}^{(r)}$ – теоретическая частота ј-го нормального колебания, сопоставленная с i-ой полосой. Все расчетные значения частот колебаний приведены с учетом множителя α_v . Найденные значения α_v для рассматриваемых соединений при минимальных значениях величины σ_v представлены в таблице 1. Оптимизированные структуры представлены на рис. 4–11.

Рис. 4. Флуоресцеин, форма H₂R, лактон (I)

Рис. 5. Флуоресцеин, форма $R^{2-}(II)$

Рис. 6. Эозин, форма H₂R, лактон (III)

Рис. 8. Эозин, форма R²⁻(V)

Br 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.897 1.446 1.254 1.463 1.427 1.463 1.427 1.463 1.427 1.425 1.425 1.425 1.425 1.425 1.425 1.363 1.905 Br 1.905 1.364 1.425 1.407 1.425 1.363 1.905 Br 1.805 1.905 1.407 1.427 1.407 1.425 1.363 1.905 Br 1.905 1.364 1.427 1.497 0 1.897 1.897 1.905 1.364 1.425 1.407 1.425 1.363 1.905 Br 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.407 1.425 1.363 1.905 1.364 1.427 1.427 1.425 1.905 Br 1.905 1.364 1.427 1.427 1.423 1.363 1.905 1.364 1.427 1.427 1.423 1.363 1.905 1.364 1.427 1.427 1.423 1.364 1.427 1.423 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.344 1.345 1.344 1.344 1.345

Рис. 7. Эозин, форма HR⁻(IV)

Рис. 9. Тетранитрофлуоресцеин, форма H_2R , лактон (VI)

Рис. 10. Тетранитрофлуоресцеин, форма HR⁻(VII)

Рис. 11. Тетранитрофлуоресцеин, форма R²⁻, лактон (VIII)

В таблице 1 приведены частоты лишь тех колебаний, интенсивность которых составляет не менее 10 % от максимальной в данном спектре. Отнесение основных частот теоретического спектра структур и сравнение с литературными данными [16, 24–27] представлены в табл. 2–9. Спектры эозина и 2,4,5,7-тетранитрофлуоресцеина приведены соответственно в работах [25] и [16]. Следует отметить, что экспериментальные данные относятся как к твердой фазе [24–26], так и к водным растворам [27]; спектры анионов тетранитрофлуоресцеина получены в ДМСО, а нейтральной формы – в твердом состояниии [16]. Анализ литературных данных по экспериментальным спектрам [16, 24–27] показал, что частоты скелетных колебаний для незамещенного флуоресцеина и его производных в целом совпадают. Исходя из этого, в некоторых случаях мы распространили данные по отнесению полос флуоресцеина и на спектры его производных.

	1 400	iniqu it initer			B THE enempt	и (по даппыя	i pue ieru)	
N⁰	Ι	II	III	IV	V	VI	VII	VIII
	1004	1107 (1105)	1080 (1082)	1263	1255	1095	1251 (1255)	1138 (1120)
	1125	1184	1120 (1107)	1354	1345 (1357)	1128 (1130)	1307	1243 (1260)
	1126	1217	1159	1354	1369	1190	1337 (1340)	1260
	1171 (1185)	1361 (1362)	1159* ²	1382	1379	1209	1340	1288
	1209	1368	1248 (1217)	1483	1473 (1470)	1261	1388	1325
1	1242	1394 (1394)	1271 (1285)	1506	1565	1274	1486 (1490)	1376
DT.	1261	1433	1319	1585	1574 (1560)	1290 (1290)	1526 (1535)	1450
аст	1288	1472 (1478)	1444 (1472)	1732	1579	1304	1556 (1550)	1543 (1530)
еч	1298	1511	1494		1604 (1609)	1341	1596 (1590)	1609
HbI	1311	1571	1631			1400	1646 (1660)	1631 (1635)
нет	1369	1586 (1580)	1767 (1764)			1456 (1445)	1729 (1710)	1661
acı	1457 (1465)	1595				1491		1758 (1765)
д	1519	1650				1563		
	1631					1576		
	1640 (1610)					1614		
	1743 (1755)					1649 (1640)		
						1775 (1790)		
α_v	0,994	0,990	0,998	0,998	0,993	0,992	0,988	0,997
σ_v	18.3	4.4	23.1	<u>*</u> *	9.5	8.4	13.9	14.3

Таблица 1. Интенсивные полосы (cm^{-1}) в ИК спектрах (по данным расчета) $*^{1}$

*¹ В скобках указаны частоты пиков экспериментального ИК-спектра, использованные для масштабирования; жирным шрифтом выделены наиболее интенсивные полосы спектра.

 $*^2$ Два одинаковых значения подряд означают, что расчет дает наличие близкой пары поглощений, с разницей в частоте менее 0.5 см⁻¹.

*³ В связи с отсутствием данных по экспериментальному ИК-спектру моноаниона эозина, для масштабирования взято значение α_ν для нейтральной формы.

Таблица 2. Отнесение основных частот в расчетном ИК спектре флуоресцеина, форма H₂R, лактон (I)

r	, I	
ν,	OTHECOME HACTOT TEODOTHIECKORO CHEMTDA	Отнесение пиков экспериментального ИК-спектра
см ⁻¹	Отнессние частот теоретического спектра	по литературным данным
1126	Ксантен: асимм. валентные колебания С-О-С,	Деформационные углов ССН (1120 см ⁻¹ , 1116 см ⁻¹)
	и С-ОН, деформационные колец, деформаци-	[25, 27 ^{*1}]. Валентные С–О (1110 см ⁻¹ , 1116 см ⁻¹) [26,
	онные ССН и СОН.	27* ¹].
1171		Валентные колебания С–О–С (≈1200 см ⁻¹) [24]. Ва-
	$C \cap U$ repensional control representation $C \cap C$,	лентные колебания С-ОН (1175 см ⁻¹ , 1183 см ⁻¹) [25,
и С-ОН, деформационные колец, деформ		27]. Валентные С-О (1170–1180 см ⁻¹) [26]. Дефор-
	онные ссп и соп.	мационные углов ССН и СОН (1183 см ^{-1}) [27* ¹].
1457	Ксантен: асимм. валентные колебания С-О-С	Валентные С-О (1450 см ⁻¹) [25]. Колебания арома-
	и С-С, деформационные колец, деформаци-	тического скелета (1450–1460 см ⁻¹) [26]. Валентные
	онные ССН и СОН.	колебания СО и СС $(1460 \text{ см}^{-1}) [27^{*1}]$.
1640	Ксантен: асимм. валентные колебания С-О-С,	Пеформационные колец (1505 cm^{-1}) [25] Колебания
	С-ОН и С-С, деформационные колец, дефор-	ароматического скенета (1595 см) [25]. Колсоания ароматического скенета (1590–1610 см $^{-1}$) [26]
	мационные ССН и СОН.	
1743	Валентные колебания С=О лактона	Валентные колебания С=О лактона (1729 см ⁻¹ , 1700–
	Busentinge Roseouning C O surronu.	1760 см ⁻¹) [24, 25].

- Примечания к таблицам 2–9: *¹ Данные для моноаниона флуоресцеина в водном растворе. *² Данные для нейтральной формы флуоресцеина и его динатриевой соли. *³ Данные для флуоресцеина, эозина и других производных.

		2 ()
Таблица 3 Отнесение основных настот	в пасчетном ИК спектре флуоресцения (honwa $\mathbf{R}^{2-}(\mathbf{H})$
таблица 5. Отнессние основных частот	в расчетном инсенскире флубресцейна, с	popman (11)

ν, 	Отнесение частот теоретического спектра	Отнесение пиков экспериментального ИК-спектра
CM 1	1 1	по литературным данным
1107	Ксантен: асимм. валентные колебания С-О-С и	Деформационные углов ССН (1120 см ⁻¹ , 1116 см ⁻¹)
	С-С, деформационные колец, деформационные	[25, 27]. Валентные С–О (1110 см ⁻¹ , 1116 см ⁻¹) [26,
	CCH.	27].
1361	Ксантен: асимм. валентные колебания С-О	Колебания связанные с фенолятным ионом (1350-
	ксантена, деформационные колец, деформаци-	1390 см ^{-1}) [24, 27]. Валентные С–О (1310 см ^{-1})
	онные ССН.	[26]. Валентные колебания СС (1330 см ⁻¹) [27].
1368	Симм. валентные колебания СОО-, асимм. ва-	
	лентные колебания С-О ксантена, деформаци-	Симм. валентные колебания СОО ⁻ [24, 27].
	онные колец, деформационные ССН.	
1472	Ксантен: асимм. валентные колебания С-О,	Симм. колебания СОО ⁻ (1465 см ⁻¹) [25]. Колебания
	асимм. валентные колебания С-О-С, деформа-	ароматического скелета (1450–1460 см ⁻¹) [26].
	ционные колец, деформационные ССН.	Валентные колебания СО и СС (1460 см ⁻¹) [27].
1571	Λ_{OUT}	Колебания связанные с СОО ⁻ (1560 см ⁻¹) [24].
	Асимм. валентные колеоания СОО, деформа-	Колебания СОО ⁻ (1570 см ⁻¹) [25]. Асимм. валент-
	ционные ССП.	ные колебания СОО ⁻ (1584 см ⁻¹) [27].
1650	Симм. валентные колебания С-С и С-О ксанте-	Симм. валентные колебания С-С и С-О ксантена,
	на, деформационные угла С-О-С, деформаци-	деформационные угла С-О-С, деформационные
	онные ССН.	ССН (1636 см ⁻¹) [27].

Таблица 4. Отнесение основных частот в расчетном ИК спектре эозина, форма H₂R, лактон (III)

ν, см ⁻¹	Отнесение частот теоретического спектра	Отнесение пиков экспериментального ИК- спектра по литературным данным
1120	Валентные – С–О– лактона, деформационные	
	бензольного кольца, деформационные угла	Деформационные углов ССН (1100 см ⁻¹) [25].
	О-С=О лактона, деформационные ССН бен-	Валентные С–О (1110 см^{-1}) [26* ²].
	зольного кольца.	
1159		Деформационные углов ССН и СОН (1183 см ⁻¹)
	Асимм. деформационные СОН и ССН.	[27* ¹]. «Фенольные» колебания СОН (1200 см ⁻¹)
		[25].
1159		Деформационные углов ССН и СОН (1183 см ⁻¹)
	Асимм. деформационные СОН и ССН.	[27* ¹]. «Фенольные» колебания СОН (1200 см ⁻¹)
		[25].
1248	Ксантен: асимм. валентные колебания	Валентные колебания С–О–С (≈1200 см ⁻¹)
	С-О-С, и С-С, деформационные ССН, ССВг,	$[24^{*2}]$. Валентные колебания С–ОН (1200 см^{-1})
	COH.	[25]. Валентные С–О (1232 см ^{-1}) [26* ²].
1271	Симм. деформационные углов СОН, ССВг,	1 2
	ССН, валентные колебания С-С, С-О ксантена,	Валентные С–О (1250 см ⁻¹) [26* ²].
	деформационные углов С-О-С=О лактона.	
1444	Ксантен: симм. валентные колебания	Валентные колебания СО и СС (1460 см ⁻¹)
	С–О–С, С–С, С–Вг и С , сеформационные	[27* ¹].
17(7	колец, деформационные ССН, ССВг, СОН.	
1767	Валентные колебания С=О лактона.	Валентные колебания $C=O$ лактона (1/35 см $^{-1}$)
		[25].

		······································
ν ,	Отнесение частот теоретического спектра	Отнесение пиков экспериментального ИК-
СМ		спектра по литературным данным
1263	Ксантен: асимм. валентные колебания С–О–С, и С–С, деформационные ССН.	Асимм. валентные колебания С–О–С (1250– 1300 см ⁻¹) [25]. Деформационные углов ССН (1240 см ⁻¹) [25]. Валентные С–О (1290 см ⁻¹) [26* ²]
1354	Деформационные угла С-О-Н. Ксантен: асимм. валентные колебания С-О-С, С-С и С=О, де- формационные колец, деформационные ССН.	[20 ⁻]. Валентные С–О (1310 см ⁻¹) [26* ²]. Валентные колебания СС (1330 см ⁻¹) [27* ¹].
1483	Ксантен: асимм. валентные колебания С-О-С, С-С и С-О, деформационные колец, деформационные ССН.	Колебания ароматического скелета (1455– 1465 см ⁻¹) [26* ²].
1585	Ксантен: асимм. валентные колебания С-С и С-О, деформационные колец, деформа- ционные ССН.	Деформационные колец (1500 см ⁻¹) [25].
1732	Валентные колебания C=O в COOH, деформа- ционные угла C-O-H.	Колебания СООН (1711 см ⁻¹) [26* ²].

Таблица 5. Отнесение основных частот в расчетном ИК спектре эозина, форма HR⁻ (IV)

Таблица 6. Отнесение основных частот в расчетном ИК спектре эозина, форма R²⁻ (V)

ν,	OTHECENNE HACTOT TEODETHIECKORO CHEKTDA	Отнесение пиков экспериментального ИК-		
см ⁻¹	Отнессние частот теоретического спектра	спектра по литературным данным		
1255	Ксантен: асимм. валентные колебания	Деформационные углов ССН (1240 см ⁻¹) [25].		
	ционные ССН.	Валентные С–О (1255 см ^{-1}) [26 ^{$*2$}].		
1345	Ксантен: асимм. валентные колебания			
	С–О–С, С–С и С —О, деформационные колец, деформационные ССН, ССВг.	Валентные С–О (1280–1315 см ⁻¹) [26* ²].		
1379	Ксантен: асимм. валентные колебания	С–О карбоксицата (1360 см ⁻¹) [25]. Коцебания		
	С-О-С, С-С и С=О, деформационные колец, деформационные ССН, ССВг.	ароматического скелета (1380–1398 см ⁻¹) [$26*^2$].		
1473	Ксантен: асимм. валентные колебания	Валентные колебания СО и СС (1460 см ⁻¹)		
	С-О-С, С-С и С-О, деформационные колец,	[27* ¹]. Колебания ароматического скелета (1460		
	деформационные CCH, CCBr.	см ⁻¹) [26* ²]. Симм. колебания СОО ⁻ (1465 см ⁻¹)		
1574	Ксантен: асимм. валентные колебания	Деформационные колец (1580 см ⁻¹) [25]. Коле-		
	С-С и С-О, деформационные колец, деформа-	бания ароматического скелета (1575–1580 см ⁻¹)		
	ционные ССН, ССВг.	$[26^{*^2}].$		
1579	Симм. С-О ксантена, деформационные колец,	$\Lambda_{\rm CHMM}$ roteforing COO ⁻ (1580 cm ⁻¹) [25]		
	асимм. валентные колебания СОО	Асими. колсоания СОО (1500 см.) [25].		
1604	Асимм. валентные колебания СОО-, деформа-	Пеформационные колец (1610 см $^{-1}$) [25]		
	ционные бензольного кольца.			

Таблица 7. Отнесение основных	частот в расчетном ИК	спектре тетранитрофлуоресцеина,
	форма H ₂ R, лактон (VI	

v, см ⁻¹	Отнесение частот теоретического спектра	Отнесение пиков экспериментального ИК- спектра по литературным данным
1128	Ксантен: асимм. валентные колебания С–С, С–N, С–О–С, деформационные колец, деформационные ССН и СОН.	Деформационные углов ССН (1100–1120 см ⁻¹) [25* ³].
1290	Ксантен: асимм. валентные колебания С-О-С, С-С, С-N, деформационные колец, деформационные ССН, Деформационные углов ССN, симм. валентные ОNО.	Симм. валентные NO ₂ (1320–1355 см ⁻¹) [16]. Деформационные углов ССН (1290–1330 см ⁻¹) [25* ³].
1304	Симм. валентные колебания С–С, С–N, С–О–С и С–ОН, деформационные колец, деформаци- онные ССН, симм. валентные О=N=О.	Симм. валентные NO ₂ (1320–1355 см ⁻¹) [16]. Деформационные углов ССН (1290–1330 см ⁻¹) [25 ^{*3}].
1456	Ксантен: асимм. валентные колебания С-С, С-N, С-О-С, С-ОН, деформационные колец, деформационные ССН и СОН.	Колебания ароматического скелета (1450–1460 см ⁻¹) [26* ²].

	газлица 7. продолжение.			
1491	Ксантен: асимм. валентные колебания С-С, С-N, С-О-С и С-ОН, деформационные колец, деформационные ССН и СОН, асимм. валентные ОтN=О.	Асимм. валентные NO ₂ (1510–1540 см ⁻¹) [16]. Колебания ароматического скелета (1455–1465 см ⁻¹) [26* ²].		
1576	Ксантен: асимм. валентные колебания С-С и	Деформационные колец (1580–1608 см ⁻¹) [25* ³].		
	С-N, деформационные колец, деформационные	Колебания ароматического скелета (1590–1610		
	ССН и СОН, асимм. валентные О-N-O.	cm^{-1}) [26 ^{*2}]. Асимм. валентные NO ₂ (1510–1540		
		см ⁻¹) [16].		
1649	Ксантен: асимм. валентные колебания			
	С–С, С–N и С–ОН, деформационные колец, деформационные ССН и СОН, асимм. валент- ные О	Деформационные колец (1610–1620 см ⁻¹) [25* ³].		
1775	Валентные колебания С=О лактона.	Валентные колебания С=О лактона (1790 см ⁻¹) [16].		

Таблица 7. Продолжение

Таблица 8. Отнесение основных	частот в расчетном ИК	спектре тетранитрофлуоресцеина,
	форма HR ⁻ (VII)	

v		Отнесение пиков экспериментального ИК-	
$c M^{-1}$	Отнесение частот теоретического спектра	спектра по питературным ланным	
1251	Ксантен: асимм валентные колебания	Валентные колебания $C = O = C (\approx 1200 \text{ см}^{-1})$	
1201	С-О-С и С-С леформационные ССН	[24* ³]	
1307	Ксантен: асимм. валентные колебания		
	С–О–С, С–С, С–N, деформационные колец,	Симм. валентные NO ₂ (1320–1355 см ⁻¹) [16].	
	деформационные ССН, Деформационные углов	Деформационные углов ССН (1290–1330 см 1)	
	ССN, симм. валентные О-N-O.	[25**].	
1337	Валентные колебания С-ОН, деформационные	CHAR DETENTION IN $(1220, 1355, cm^{-1})$ [16]	
	угла С-О-Н. Ксантен: симм. валентные колеба-	Симм. валентные NO_2 (1520–1555 см) [10]. Леформационные услов ССН (1290–1330 см ⁻¹)	
	ния C–N, деформационные углов ССН, симм.	[25* ³]	
	валентные От N О.		
1340	Асимм. валентные колебания С–С, С–N, де-	Колебания ароматического скелета (1327 см ⁻¹),	
	формационные колец, деформационные ССН,	симм. валентные $NO_2 (1320-1355 \text{ см}) [16].$	
	Симм. валентные ОО., деформационные угла	Деформационные уплов ССН (1290–1350 см)	
1486	С-0-11. Ксантен: асимм валентные колебания	[25]].	
1.00	С–С, С–О–С, С–N и С … О, деформационные	Колебания ароматического скелета (1455–1465	
	колец, деформационные углов ССН и ССN,	$cm^{-1})$ [26* ²].	
	асимм. валентные От N. О.		
1526	Ксантен: асимм. валентные колебания	Колебания ароматического скелета (1542 см ⁻¹)	
	С-С, С-N, и С=О, деформационные колец,	асимм валентные NO ₂ $(1510-1540 \text{ см}^{-1})$ [16]	
	деформационные углов ССН и ССN,	Деформационные колец (1480–1520 см ⁻¹) [$25*^3$].	
1556	асимм.валентные От N	, , , , , , , , , , , , , , , , , , ,	
1550	С С и С М деферменности колос деформа	Λ_{0} and μ_{0} = $1510 + 1540 \text{ av}^{-1}$ [16]	
	UNCHULE VEROR CCH и CCN асими радентные	Асимм. валентные $NO_2 (1510-1540 \text{ см}^{-1}) [10].$ Леформационные колец (1580–1595 см ⁻¹) [25* ³]	
		Деформационные колец (1900–1995 ем.) [25].	
1596	Ксантен: асимм. валентные колебания		
	С-С, С-N и СО, деформационные колец, де-	Колебания ароматического скелета (1600 см ⁻¹)	
	формационные углов ССН и ССN, асимм. ва-	[16]. Деформационные колец (1580–1608 см) $[25*^3]$	
	лентные О-N-О.	[2 <i>3</i> ⁺].	
1646	Ксантен: асимм. валентные колебания		
	С=О, С-О-С, С-С, и С-N, деформационные	Леформационные колец (1610–1620 см ⁻¹) [25* ³]	
	колец, деформационные углов ССН и ССN,		
1720	асимм. валентные $O = O = O O U$		
1/29	валентные колеоания С=О в СООН, деформа-	Колебания СООН (1710 см ⁻¹) [16].	
	ционные угла С–О–п.		

V		Отнесение пиков экспериментального ИК_
v,	Отнесение частот теоретического спектра	
CM		спектра по литературным данным
1138	Ксантен: асимм. валентные колебания С–С, С–	Леформационные углов ССН (1100–1120 см ⁻¹)
	N, C–O–C, деформационные колец, деформаци-	[25*3]
	онные ССН.	
1243	Ксантен: асимм. валентные колебания С-О-С,	
	С-С и С-N, деформационные колец, деформа-	Валентные С–О (1255 см^{-1}) [26* ²].
	ционные ССН, симм. Валентные О-N=O.	
1260	Ксантен: симм. валентные колебания С-О-С,	
	С-С и С-N, деформационные колец, деформа-	Валентные С–О (1255 см^{-1}) [26* ²].
	ционные ССН, симм. Валентные О-N-O.	
1325	Ксантен: симм. валентные колебания С-С, С-N,	Симм. валентные NO ₂ (1320–1355 см ⁻¹) [16].
	С-О-С и С-О, деформационные колец, дефор-	Деформационные углов ССН (1290–1330 см ⁻¹)
	мационные ССН, симм. Валентные О-N-О.	[25* ³].
1450	Ксантен: асимм. валентные колебания	Vалабания араматичанара аналата (1455, 1465
	С–О–С и С–С, деформационные колец, дефор-	Колеоания ароматического скелета (1455–1465 x_{2}^{-1}) го (*21
	ма-ционные ССН, асимм. валентные О-N-O.	СМ) [26*].
1543	Асимм. валентные О-N-O. Ксантен: асимм.	$A_{1} = 0$ $(1510 + 1540 + -1)$ $[1(1)$
	валентные колебания С–С и С–N, деформаци-	Асимм. валентные NO_2 (1510–1540 см.) [16].
	онные колец, деформационные ССН.	Деформационные колец (1580–1608 см $^{-1}$) [25 $^{*-}$].
1631	Ксантен: асимм. валентные колебания С-О. С-	
	С и С-N леформационные колец леформаци-	Леформационные колец (1610–1620 см ⁻¹) [25* ³]
	онные ССН. асимм. валентные О	
1758		Валентные колебания С=О лактона (1765 см ⁻¹)
1,00	Валентные колебания С=О лактона.	
		[10].

Таблица 9. Отнесение основных частот в расчетном ИК спектре тетранитрофлуоресцеина, $dopma B^{2-}$ (VIII)

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Флуоресцеин. Сопоставление экспериментального и теоретического спектров структур в ДМСО представлено на рис. 12 и 13 (здесь и в дальнейшем по оси ординат отложена интенсивность поглощения в относительных единицах). Расчет подтверждает, что исчезновение полосы ≈1760 см⁻¹ в экспериментальном спектре при переходе к ионной форме связано с изменением структуры с лактонной (I) на хиноидную (II). При этом наблюдается увеличение интенсивности колебаний связанных с С–О и С–С связями – это общая тенденция для всех рассмотренных структур.

Частота 1171 см⁻¹ расчетного спектра лактона в ДМСО соответствует пику 1185 см⁻¹ экспериментального спектра. Согласно расчету, это поглощение обязано своим происхождением асимметричным валентным колебаниям связей С–О–С и С–ОН, сопряженным с деформационными колебаниями колец и изгибом связей С–Н и О–Н в плоскости ксантена. Согласно некоторым литературным данным [24], в области 1200 см⁻¹ должны наблюдаться валентные колебания кислородного мостика, в то время как другие авторы [25, 27] относят поглощение в этой области к валентным колебаниям С–ОН, сопровождаемым изгибом СН связей в плоскости колец. Таким образом, обе эти точки зрения находят свое подтверждение в наших расчетах. Полоса 1571 см⁻¹ расчетного спектра дианиона отнесена к асимметричным валентным колебаниям СОО⁻.

Также стоит отметить, что интенсивный и широкий пик $\sim 1610 \text{ см}^{-1}$ в экспериментальном спектре лактона (I) соответствует, очевидно, группе линий $\sim 1640 \text{ см}^{-1}$ в расчетном спектре. Эти линии относятся к симметричным и асимметричным колебаниям углеродного скелета, затрагивающим и связи углерод–кислород. Заметное расхождение экспериментальных и расчетных частот вероятно связано со специфической сольватацией, которую наш расчет не учитывает.

Кроме того, эксперимент фиксирует в спектрах флуоресцеина и его производных в твердом состоянии пик ~1000 см⁻¹, который относят к симметричному колебанию С–О–С [25]. В спектрах диметилсульфоксидных [16] и водных [27] растворов этот максимум не обнаружен. В наших расчетах заметный пик 1004 см⁻¹ дает лишь лактон (I), причем эта частота соответствует деформационному колебанию углов С–С–Н; расчет в работе [27] также не фиксирует симмет-

ричного колебания С–О–С. Мы полагаем, что симметричное колебание С–О–С в рассматриваемых соединениях должно соответствовать частоте несколько ниже 1000 см⁻¹.

В расчетном спектре дианиона (II) присутствуют колебания 1650, 1217 см⁻¹, которые не были обнаружены в экспериментальном спектре в ДМСО. В то же время, в других условиях колебания с частотами ~1630 и ~1215 см⁻¹ фиксируются многими авторами [24, 26, 27]. Из этого можно заключить, что их отсутствие в экспериментальном спектре в ДМСО обусловлено тем, что им соответствуют слабые пики, которые перекрываются спектром растворителя. Вероятно, то же относится и к колебанию 1433 см⁻¹. Что касается пика ~1300 см⁻¹, то расчет фиксирует очень слабое колебание с частотой 1303 см⁻¹, относящееся к углеродному скелету и затрагивающее также углы С–С–Н.

Рис. 12. Экспериментальный (кривая) и теоретический (вертикальные линии) спектр нейтральной формы флуоресцеина (I) в ДМСО.

Рис. 13. Экспериментальный (кривая) и теоретический (вертикальные линии) спектр дианиона флуоресцеина (II) в ДМСО.

Эозин. Сопоставление экспериментального и теоретического спектров эозина в ДМСО представлено на рис. 14–16. Спектр чистой формы моноаниона в эксперименте выделить не удается. По этой причине, для масштабирования теоретических частот колебаний в случае моноаниона был взят масштабный множитель α, для нейтральной формы. В ходе нейтрализации эозина щелочью в ДМСО в экспериментальном спектре, наряду с полосой валентных колебаний C=O лактона (структура III) появляется пик ≈1710 см⁻¹, обусловленный появлением некоторого количества моноаниона. Расчет подтверждает, что появление слабой полосы ≈1710 см⁻¹ в экспериментальном спектре при переходе от нейтральной формы (III) к моноаниону (IV) связано с размыканием лактонного цикла и образованием СООН группы. Следует отметить, что расчет дает несколько завышенные значения для частоты, связанной с колебаниями С=О связи в группе СООН. Согласно литературным данным [15] и исходя из изменений в ИК-спектрах красителей при добавлении щелочи, эта частота должна составлять ~1710 см⁻¹, расчет же дает для этого колебания частоту ~1730 см⁻¹. Мы полагаем, что этот факт объясняется тем, что расчет не учитывает специфических взаимодействий с растворителем, которые наиболее сильно проявляются как раз в случае присутствия СООН и СОО- групп. При проведении расчетов нами замечено, что прибавление к модели явных молекул растворителя у СООН группы и С=О лактона снижает расчетные частоты для колебаний этих групп и увеличивает разницу между ними. В отсутствие явных молекул растворителя эта разница составляет 20-50 см⁻¹, тогда как при добавлении явных молекул растворителя она увеличивается до 40-80 см⁻¹, что соответствует разнице между экспериментальными частотами колебаний. Данный недостаток выбранного метода, тем не менее, не мешает использовать его для отнесения полос экспериментального ИК спектра рассматриваемых соединений.

В теоретическом же спектре дианиона (V) полосы в области 1700–1800 см⁻¹, как и ожидалось, не наблюдается. Полосы 1248 и 1263 см⁻¹ в расчетном спектре нейтральной формы и моноаниона отнесены на счет асимметричных валентных колебаний С–О–С [25]. Полоса 1579 см⁻¹ расчетного спектра дианиона отнесена на счет асимметричного валентного колебания СОО⁻. Двойная полоса 1159 см⁻¹ в расчетном спектре лактона (III), соответствующая двум асимметричным колебаниям С–О–Н, по нашему мнению, отвечает экспериментальному пику в районе

1200 см⁻¹, которая была отнесена [25] к тем же колебаниям. Столь заметное смещение этого деформационного колебания, возможно, связано со специфической сольватацией. Широкий пик в районе 1460 см⁻¹ в спектре молекулы (V) авторы [25] относят к симметричным колебаниям СОО⁻. Согласно нашим результатам, этот пик относится к скелетным колебаниям (см. табл. 6), а симметричные колебания COO^- соответствуют частоте около 1370 см⁻¹. В более ранней работе [27] подобный же вывод был сделан для дианиона флуоресцеина (II).

Рис. 14. Экспериментальный (кривая) и теоретиче- Рис. 15. Теоретический спектр моноаниона эозина ский (вертикальные линии) спектр нейтральной формы эозина (III) в ДМСО.

(IV) в ДМСО.

2,4,5,7-Тетранитрофлуоресцеин. Сопоставление экспериментального и теоретического спектров в ДМСО представлено на рис. 17–19. Как и в случае предыдущего соединения, расчет подтверждает, что исчезновение полосы ≈1790 см⁻¹ и появление слабой полосы ≈1710 см⁻¹ в экспериментальном спектре тетранитрофлуоресцеина связано с размыканием лактонного цикла и образованием СООН группы. В спектре дианиона, регистрируемом в ДМСО при достаточной концентрации щелочи, полоса ≈1710 см⁻¹ исчезает, наблюдается интенсивная полоса ≈1765 см⁻¹, относящаяся к валентным колебаниям С=О лактонного дианиона, что подтверждается расчетом. Полосы 1340 и 1325 см⁻¹ в расчетном спектре моноаниона и дианиона лактона отнесены на счет симметричных валентных колебаний NO₂ [16]. Полосы 1491, 1576, 1649 см⁻¹ нейтральной формы, 1526 и 1556 см⁻¹ моноаниона и 1543, 1631 см⁻¹ дианиона отнесены на счет асимметричных валентных колебаний группы NO2, сопряженных с деформационными колебаниями колец углеродно-кислородного скелета ксантеновой части молекулы. [16, 25].

В экспериментальном ИК спектре 2,4,5,7-тетранитрофлуоресцеина при переходе от нейтральной формы (VI) к моноаниону (VII) наблюдается смещение пика 1290 см см⁻¹ в область 1350–1365 см⁻¹. Полосы 1185 и 1230 см⁻¹ смещаются к 1195 и 1245–1255 см⁻¹ соответственно. В расчетном спектре при переходе от нейтральной лактонной формы к моноаниону (VII) данный эффект воспроизводится лишь частично: полоса 1304 см⁻¹ связанная с симметричным колебанием нитрогрупп, сопровождаемых скелетными колебаниями, перемещается в положение 1340 см⁻¹ и становится менее интенсивной. Однако наиболее интенсивная полоса 1290 см⁻¹, связанная с асимметричными колебаниями нитрогрупп, сопряженными со скелетными колебаниями, смещается незначительно (к 1307 см⁻¹). В результате остается неясным, следует ли частоту 1307 см⁻¹ расчетного спектра относить к пику 1245–1255 или 1350–1365 см⁻¹ экспериментального спектра, или вообще к некоему слабому пику, маскируемому интенсивным поглощением ДМСО в области 1300-1400 см⁻¹. Кроме того, расчет не позволил уверенно идентифицировать слабые колебания 1190, 1209 см⁻¹ нейтральной формы (VI) как соответствующие колебаниям 1203, 1251 см⁻¹ моноаниона (VII).

Рис. 16. Экспериментальный (кривая) и теоретический (вертикальные линии) спектр дианиона эозина (V) в ДМСО.

Рис. 17. Спектр нейтральной формы тетранитрофлуоресцеина (VI): экспериментальный (кривая) в твердой фазе, теоретический (вертикальные линии) в ДМСО.

Рис. 18. Экспериментальный (линии) и теоретический (вертикальные полосы) спектр моноаниона (VII) тетранитрофлуоресцеина (0.03 М) в ДМСО; 1 – в нейтральном раствори-теле, 2 – 0,03 М СГ₃СООН;

Рис. 19. Экспериментальный (линии) и теоретический (вертикальные полосы) спектр дианиона тетранитрофлуоресцеина (VIII) в ДМСО.

Таким образом, проведенный нами расчет теоретических колебательных спектров нейтральных и ионных форм ряда красителей группы ксантена подтверждает выводы о существовании и превращениях форм этих соединений в растворах ДМСО, сделанные ранее на основе анализа одних лишь экспериментальных ИК спектров этих соединений. Обнаружено хорошее соответствие между теоретическими и экспериментальными ИК спектрами. В свою очередь, это означает, что выбранная методика расчета вполне адекватно описывает структуру и колебательные спектры выбранных соединений и может быть распространена на другие красители данной группы.

Литература

- 1. Sasaki E., Kojima H., Nishimatsu H., Urano Y., Kikuchi K., Hirata Y., Nagano T. J. Am. Chem. Soc. 2005. V. 127. No. 11. P. 3684-3685.
- Maeda H., Yamamoto K., Nomura Y., Koho I., Hafsi L., Ueda N., Yoshida S., Fukuda M., Fukuda M., Fukuyashu Y., Yamauchi Y., Itoh N. J. Am. Chem. Soc. 2005. V. 127. No. 1. P. 68-69.
- Zumbuehl A., Jeannerat D., Martin S.E., Sohrmann M., Stano P., Vigassy T., Clark D.D., Hussey S.L., Peter M., Peterson B.R., Pretsch E., Walde P., Carreira E.M. Angew. Chem. Int. Ed. 2004. V. 43. No. 39. P. 5181-5185.
- Cuppoletti A., Cho Y., Park J.S., Strässler C., Kool E.T. Bioconjugate Chem. 2005. V. 16. P. 528-534.

- 5. Crovetto L., Paredes J.M., Rios R., Talavera E.M., Alvarez-Pez J.M. J. Phys. Chem. A. 2007. V. 111. No. 51. P. 13311-13320.
- 6. Lavis L.D., Rutkovski T.J., Raines R.T. Anal. Chem. 2007. V. 79. No. 17. P. 6775-6782.
- Aschi M., D'Archivio A.A., Fontana A., Formiglio A. J. Org. Chem. 2008. V. 73. No. 9. P. 3411-3417.
- Zhang X., Liu Q., Son A., Zhang Q., Zhang F., Zhao F. Photochem. Photobiol. Sci. 2008. V. 7. No.3. P. 299-302.
- 9. Pernak J., Świerczyńska A., Walkiewicz F., Krystokwiak E., Maciejewski A. J. Brazil. Chem. Soc. 2009. V. 20. No. 5. P. 839-845.
- 10. Самойлов Д.В., Мчедлов-Петросян Н.О., Мартынова В.П., Ельцов А.В. Журн. общей химии. 2000. Т. 70. Вып. 8. С. 1343-1357.
- Mchedlov-Petrossyan N.O., Kukhtik V.I., Bezugliy V.D. J. Phys. Org. Chem. 2003. V. 16. No. 7. P. 380-397.
- 12. Mchedlov-Petrossyan N.O., Salamanova N.V., Vodolazkaya N.A., Gurina Yu.A., Borodenko V.I. J. Phys. Org. Chem. 2006. V. 19. No. 6. P. 365-375.
- 13. Мчедлов-Петросян Н.О., Саламанова Н.В., Водолазкая Н.А. Доповіді НАН України. 2006. № 12. С. 138-145.
- 14. Мчедлов-Петросян Н.О., Салинас Майорга Р., Суров Ю.Н. Журн. общей химии. 1991. Т. 61. №1. С.225-233.
- 15. Мчедлов-Петросян Н. О., Суров Ю. Н., Егорова С. И., Ариас Кордова Э. Доклады АН СССР. 1991. Т. 317. №1. С.152-157.
- Mchedlov-Petrossyan N.O., Vodolazkaya N.A., Surov Yu.N., Samoylov D.V. Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. 2005. V. 61. No. 11-12. P. 2747-2760.
- 17. Мчедлов-Петросян Н.О. Вестник Харьковского национального университета. 2004. № 626. Химия. Вып. 11 (34). С. 221-312.
- 18. Мчедлов-Петросян Н.О. Дифференцирование силы органических кислот в истинных и организованных растворах. Х.: изд. ХНУ им. В. Н. Каразина, 2004. 326 с.
- 19. Barone V., Cossi M., Tomasi J. J. Chem. Phys. 1997. V. 107, No. 8. P. 3210-3221.
- 20. Thiel A., Diehl R. Marburger Sitzungsber. 1927. V. 62. P. 471-546.
- Мчедлов-Петросян Н.О., Романенко А.В., Никишина Л.Е. Журн. аналит. химии 1984. Т. 39. № 8. С. 1395-1403.
- 22. Березин К.В., Кривохижина Т.В., Нечаев В.В. Применение метода линейного масштабирования частот в расчетах нормальных колебаний многоатомных молекул. Опт. и спектроск. 2003. Т. 94. С. 398-401.
- 23. Yoshida H., Takeda K., Okamura J., Ehara A., Matsuura H. J. Phys. Chem. A. 2002. V. 106. No. 14. P. 3580-3599.
- 24. Davies M., Jones R.L. J. Chem. Soc. 1954. P. 120-125.
- 25. Issa I.M., Issa R.M., Temerk Y.M., Ghonein M.M. Egypt. J. Chem. 1974. V. 17. No. 4. P. 391-399.
- 26. Markuszewski R., Diehl H. Talanta 1980. V. 27. No. 11. P. 937-946.
- Wang L., Roitberg A., Meuse C., Gaigalas A.K. Spectrochim. Acta. 2001. Part A. V. 57. No. 9. P. 1781-1791.

Поступила в редакцию 12 марта 2010 г.

О. В. Бірюков, О. В. Лебідь, М. О. Мчедлов-Петросян. Інфрачервоні спектри молекулярних та іонних форм флуоресцеїну, еозину та 2,4,5,7-тетранітрофлуоресцеїну в ДМСО: теоретичний розрахунок та експеримент.

З метою підтвердження адекватності уявлень щодо перетворень структур флуоресцеїну та його похідних в ДМСО, розвинутих на основі експериментальних спектрів, проведено оптимізацію геометрії та розрахунок частот нормальних коливань рівноважних молекулярних та аніонних форм флуоресцеїну та його 2,4,5,7-тетрабром- та 2,4,5,7-тетранітропохідних у ДМСО. Квантово-хімічні ab initio розрахунки проведено методом DFT B3LYP/6-31G++(d,p), з урахуванням неспецифічної сольватації (РСМ). Виконано віднесення основних смуг. Результати добре погоджуються з експериментальними IV спектрами. **Ключові слова:** флуоресцеїн, 2,4,5,7-тетрабромфлуоресцеїн, 2,4,5,7-тетранітрофлуоресцеїн, ДМСО, РСМ, DFT, IЧ спектри, віднесення смуг.

A. V. Biryukov, A. V. Lebed, N. O. Mchedlov-Petrossyan. IR spectra of molecular and ionic forms of fluorescein, eosin, and 2,4,5,7-tetranitrofluorescein in DMSO: theoretical study and experiment.

This study was aimed to confirm the conclusions about the structural conversions of fluorescein and its derivatives in DMSO, which were earlier deduced from the experimental data. The geometry optimization and calculations of the normal mode frequencies were performed for molecular and anionic equilibrium species of fluorescein and its 2,4,5,7-tetrabromo and 2,4,5,7-tetranitro derivatives in DMSO. The ab initio quantum-mechanical calculations were made using the DFT B3LYP/6-31G++(d,p) method, taking into account the non-specific solvation (PCM). The attribution of the main bands was made. The results agree well with the experimental IR spectra.

Key words: fluorescein, 2,4,5,7-tetrabromofluorescein, 2,4,5,7-tetranitrofluorescein, DMSO, PCM, DFT, IR spectra, attribution of the absorption bands.

Kharkov University Bulletin. 2010. № 895. Chemical Series. Issue 18(41).